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Abstract 

It is shown that the customary covariant formulation of electrodynamics in General 
Relativity is incompatible with the Einstein Principle of Equivalence. This is demonstrated 
for the case of a resistanceless current-carrying wire in a static spherically symmetric 
gravitational field--where the Einstein Principle of Equivalence implies the existence, in 
the vicinity of the wire, of a non-zero component of the electric field parallel to the wire, 
whereas the covariant form of Maxwell's equations does not. An experiment, involving a 
superconducting current-carrying wire segment placed in the Earth's gravitational field, 
is suggested. Whether or not a component of electric field parallel to the wire, at a point 
in the wire's vicinity, would be detected would resolve the issue. 

1. Introduction 

Since its inception the Principle o f  Equivalence has been given many 
interpretations. In  fact, it has even been categorically denied by some 
(Synge, 1960). Difficulties with this principle seem particularly acute in 
conjunct ion with electromagnetic phenomena  since it appears that  various 
phenomena  of  this type are incompatible with some of  the diverse statements 
of  the principle. In  order to put  the pr imary considerations of  this work  
into the proper  context it will be well here to briefly review several of  these 
difficulties: (a) according to one version-~ of  the equivalence principle a 
charged particle at rest in a uniform gravitational field should be in- 
distinguishable f rom one at rest in a system suitably accelerating relative 
to an inertial frame. However,  this seems unsatisfactory since in the former  
case the electron does not  radiate (relative to an observer supported in the 
field) and in the latter case it does radiate (relative to an inertial system 
which is momentar i ly  at rest relative to the electron) (Rohrlich, 1963); 
(b) an electron in free fall in a uniform gravitational field (or even an 
arbitrary gravitational field) should be indistinguishable f rom one perma- 
nently at rest in an inertial system according to another interpretation of  
the equivalence principle.~ Again, however, this seems unsatisfactory since 

t This may be called the historical version of the principle. See, e.g., Einstein, A. et al. 
The Principle of Relativity, p. 100. Dover Publications, New York; and for a 
slightly more modern statement, Sciama, D. W. (1962). Recent Developments in General 
Relativity, p. 432--The MacMillan Co., New York. 

:~ This is sometimes called the 'strong' principle of equivalence. See Dicke, R. H. 
(1964). Gravitation and Relativity, p. 13. W. A. Benjamin, Inc., New York. 
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in the former case the electron supposedly radiates (Fulton & Rohrlich, 
1960) (relative to a co-moving inertial observer) while in the latter case it 
does not. 

Some investigatorst claim to have resolved these apparent discrepancies 
with the assertions that one cannot observe radiation locally (even when 
just fictitious gravitational fields are present) or that two observers (both in 
flat space) in relative acceleration may not agree on whether or not radiation 
is present. 

For the sake of completeness it should be mentioned here that recently, 
Dewitt & Brehme (1960) and Rohrlich & Winicour (1966) have derived the 
equations of motion of a radiating charge in the presence of a permanent 
gravitational field. Accepting their basic assumptions one must conclude 
that the electron's motion does explicitly depend on the curvature so that 
the electron would not (even locally) have the same motion in a permanent 
gravitational field and an inertial field. This would seem to imply that the 
principle of equivalence (between such permanent gravitational fields and 
inertial fields) is definitely not valid--at  least for certain electromagnetic 
phenomena. 

In line with these considerations, the present work is concerned with an 
instance in which a version of the equivalence principle is in contradiction 
with a prediction of the General Theory. Specifically, it is demonstrated 
that the customary covariant formulation of electrodynamics in General 
Relativity is incompatible with the Einstein statement of the Principle of 
Equivalence, which we take as follows : any experiment involving a region 
of space of linear size ~ performed in a gravitational field of local (Gaussian) 
curvature K, must yield the same result when the experiment is performed 
instead in a system suitably accelerating relative to an inertial frame, in the 
limit as ( / K  -+ 0. That is, the difference between the two results, divided 
by the value of either, must go to zero in this limit. The incompatibility is 
demonstrated through the proof  that, in the neighborhood of a resistance- 
less~: current-carrying wire, the component of the electric field parallel to 
the wire takes on values of a different order of magnitude depending on 
whether the wire is in a gravitational field or is considered to be accelerating 
relative to an inertial system. Furthermore, this result holds in the limit of 
very weak gravitational fields. This result is felt to be significant since, in 
the General Theory, the electrodynamics governing the fields outside of 
current-carrying wires is supposedly on sound footing--perhaps more so 
than that governing the motion of radiating charges. Further, it is not 
difficult, as will be discussed, to construct a thought experiment to decide 
the issue in question. 

The format of the ensuing discussion is then as follows: In the next 

t See Rohrlich, F. (1963). Annals of Physics, 9, 499; Fulton, T. & Rohrlich, F. (1960); 
Bondi, M. and Gold, T. (1955). Proceedings of the Royal Society, A299, 416. 

$ The wire is taken to be resistanceless where, according to Newtonian physics, the 
ambient electric field would be zero. The electric field under question here is then a result 
of non-Newtonian considerations. 
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section we derive the expression for the electric field in the neighborhood 
of a 'long', 'straight' resistanceless current-carrying wire in a static, 
spherically symmetric gravitational field utilizing the previously defined 
Principle of Equivalence. This involves the evaluation of the E field due to 
an accelerating current-carrying wire--which is done rigorously in the 
Appendix. 

In Section 3, the E field in the neighborhood of a resistanceless current- 
carrying wire at rest in the above gravitational Schwarszchild field is 
calculated using the covariant form of Maxwell's equations. 

In Section 4, the discrepancy is considered and a thought experiment to 
resoIve the disagreement is suggested. 

2. Equivalence and the Wire 

Consider a resistanceless straight wire of length l carrying a constant 
current i. The Principle of Equivalence which we have adopted then states 
that the electric field (in particular the component parallel to the wire) at a 
distance d ~ l from the wire should be the same when the wire is at rest a 
sufficiently great distance from a gravitating mass (like the Earth) or when 
it is suitably accelerating relative to an inertial frame. We shall presently 
consider the latter case. 

In the present section then we are interested in the E field due to an 
accelerating wire which is carrying a constant current i. The following 
consists of a somewhat oversimplified treatment of this problem. The exact 
treatment is considered in the Appendix. 

Consider then a straight wire segment of length l carrying a constant 
current i which has a constant (intrinsic) acceleration g. Let q denote a 
positive charge which has the same acceleration as the wire and remains a 
fixed distance d ~ l from the wire. Let So denote an inertial frame relative 
to which the wire is momentarily at rest, at time to (in So). Now the charge 
will, at each moment, be encountering a field due to 'light pulses' from the 
wire occurring at earlier times--i.e, encountering the retarded field due to 
the wire. Now if /and g are not too large (this will be quantified subsequently) 
we expect that the B field 'emitted' by the wire (relative to So) is approxi- 
mately that given by Ampere's Law for the static situation, namely: 

2i 
B - Cd (2.1) 

where here, and in all that follows, Gaussian units are used. However, by 
the time the charge q encounters this field it will have a velocity, v, relative 
to So given by 

d 
v "~= g ~ (2 .2) 
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Therefore, as seen by So, a Lorentz force will act on q, of magnitude 

1 ~ 2igq (2.3) F =  ~ q v B =  ~3 

This force (per unit charge) will then be interpreted as an electric field in 
the rest frame of the charge, given by 

E ~ 2gi = ~3 (2.4) 

with a direction anti-paralM to the direction of the conventional current 
in the wire. 

As stated, this argument is somewhat heuristic. The more exact calcula- 
tion carried out in the Appendix shows that we shotfld have instead, 

~rgi (2.5) E=~ 
under the following conditions: 

gl gI I 
C~ ~ I;  d ~  1, C~ ~ ~ 1 (2.6) 

One sees that these inequalities are well satisfied for the realistic values; 
l ~ 102 cm, d ~ 1 cm, g ~ 103 cm/sec 2. 

I f  the Principle of EquivMence were correct then the above resuIt implies 
that, in the neighborhood of a current-carrying wire in a weak gravitational 
field (say that of the Earth), one should find an electric field, anti-paralM 
to the current in direction and in magnitude given by 

~rgi "rri GM 
E = ~-5- = C 3 R z (2.7) 

This is a prediction which, in principle, can be tested--a point which will 
be discussed later. 

We shall find in the next section, however, that when this calculation is 
carried out with the generally covariant form of Maxwell's equations 
applied to a current-carrying wire at rest in a gravitational field we do not 
find an electric field of the same order of magnitude as that predicted by 
equation (2.7). 

The generally covariant Maxwell's equations are thus incompatible with 
the Principle of Equivalence. 

3. Wire in a Gravitational Field 

In this section we shall calculate the electric field (component parallel to 
the wire) in the vicinity of a resistanceless current-carrying wire segment 
placed at a large Schwarszchitd distance r from the center of a gravitating 
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mass (the Earth). It  will be shown that this field is zero, at the point of  
interest, to terms of first order in GM/rC 2, thus contradicting the Principle 
of Equivalence. 

In the following calculation we need only consider the contribution to 
the metric due to the gravitating mass--i .e,  we may neglect the contribution 
coming from the current-carrying wire itself. This may be seen as follows: 

F rom the solution to Einstein's equations for weak fieldst we have the 
elm due to the following expression for the contribution to the metric g~,~ 

electromagnetic field 

f [Telml elm__ 4G L ~ ~d3 x (3.1) 
gt~v -- ~/,v C 4 ~ 7 ~  

where ~)~v is the diagonal matrix ( - 1 , - 1 , - 1 , 1 )  for Minkowski space; 
T/elm signifies the electromagnetic stress tensor, and the brackets signify I) 

that retarded values are used. 
As a typical element we have 

4G f Tolm~44 4G f d 3 (EZ+HZ)d3x  (3.2) 
r t e l m  1 -- X = 1 -- ~ 87rr' , 5 4 4  = ~ r t 

where the retardation brackets have been dropped since we have a stationary 
situation. 

Now to get an estimate of the above integral we replace the wire segment 
by a circular ring of radius R (proportional to the length of the wire segment) 
and cross-sectional area a, carrying a current i. For this case.~ 

U - = ~  ( E 2 + H Z ) d Z x = ~ - [ - ~ + l n  i 2 ~  C~- (3.3) 

We now assume that 

f 
s t r a i g h t  c i r c .  

l i n e  w i r e  

For  the straight wire segment we then have 

f 2 l f ( E 2 + H 2 ) d 3 x  ( E 2 + H  )d3x  < ~ _ _ _  
j 8Trr' ~ d 87r = 

where d is the distance of the field point from the wire. 
Therefore, 

4 GRi 2 gelm~ 1 - - - -  
4 4  = d C  6 

f Ri 2 (E2 877- -r H2) a'3 x "~= (E2 877" -1- H2) d3 x ~= C2 (3.4) 

Ri 2 
dC 2 (3.5) 

(3.6) 

t See, for instance, Tolman, R. C. (1934). Relativity, Thermodynamics and Cosmology, 
p. 238. Clarendon Press, Oxford. 

See, for instance, Abraham, M. and Becker, R. (1930). The Classical Theory of 
Electricity and Magnetism, p. 176. Hafner Publishing Co., Inc., New York. 
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Again, using the weak field solution, we have for the contribution of the 
gravitating mass to the metric, the expression 

Therefore, 

4G ( {Tu~ - �89 T) d3 
g,~ = %~ - ~4 . /  r '  x (3.7) 

If  we take the mass of the Earth for M, and the radius of the Earth for r, 
then for these realistic values, r ~ 10 8 cm, d ~  1 cm, iN 10 9 statamp, 
M N 10 28 gin, R ~ 10 2 cm, we obtain 

Ri 2 d 
M C  4 10-5~ -r ~ 10-8 

and so the inequality of equation (3.9) is indeed well satisfied and we can 
safely neglect all electromagnetic contributions to the metric. 

We now proceed to the calculation of E near the wire. 
In the following, a semicolon indicates covariant differentiation and a 

comma ordinary differentiation. Two indices following a semicolon or 
comma indicate second covariant or ordinary derivatives, respectively. 

We take the generally covariant form of Maxwell's equations as 

F~=A~,~ -A~ ,u=Am~-A~;  m F~;y=4~j" (3.10) 

where A ~ is the 4-vector potential, which shall be selected in the Lorentz 
gauge A~; = 0, and j r  is the 4-current density.]" 

Putting the second of equations (3.10) into a form depending o n j , ,  and 
utilizing the first of equations (3.10) yields 

4rr .... CA - A~;,,} (3.11) 

Using the general relation, Aa.~/3-Aa.~ = A ~ B ~ ,  where B~/3 is the 
Riemann Christoffel tensor, then 3,ields the following relation 

4r 
g ~  Au;~ + g ~  B ~ u a  ~ = -~ j ,  (3.12) 

t See Tolman, R. C. (1934). Relativity, Thermodynamics and Cosmology, p. 258. 
Clarendon Press, Oxford. 

f C2pd3x 2GM (3.8) 
g44 -~ 1 - ~_. r '  - 1  rC 2 

where in the integral in equation (3.7) the guy are given their Minkowski 
values, and we assume that T ~ T44. 

Therefore, as can be seen by comparing equations (3.8) and (3.6), a 
sufficient condition that the electromagnetic contribution to the metric is 
negligible is that 

Ri 2 d 
(3.9) 

M C  4 ~ r 



THE P R I N C I P L E  OF EQUIVALENCE 131 

where the Lorentz gauge condition has been used. 
The metric involved here depends, due to the preceding discussion, only 

on that produced by the gravitating mass. Further, since the relation 

g~t~ B~ ~. = 0 (3.13) 

is equivalent to the field equations (due to just gravitating matter) in empty 
space, we can immediately re-write equation (3.12) as 

4~r 
g~/3 A~;~ = ~ j~ (3.14) 

Now we are considering a region of the gravitational field which is to 
be very weak, so we put 

g~v = ~7~v + h~, g~  = ~7~ + h,~, h~ = _~t~ .q~t~ h~/~ (3.15) 

where the Minkowski metric, ~,,~, is the diagonal matrix ( -1 , -1 , -1 ,1 ) ,  
and h~  and derivatives of guy (or hu~ ) are to be regarded as small quantities 
of the first order. In the following we shall only be interested in relations 
to first order in these small quantities. We shall presently write out equation 
(3.14) to first order, which becomes 

~A~ - ,ff~ ,/t~ ho~ A~,/3~ - 2~ ~ ~a[tz/3,)qh Ao,~ 

4rr 
- W~~ ~ ' a [ / % , a ] h a ~ , ,  = ~ - j ,  (3.16) 

where 

5 ( . . . )  ~ ~)=t~(... ),~t3 and [ /~ ,A]  h - l ( h . a , ~  + / ~ a , u  - h .~ .a )  (3.17) 

Now we introduce asymptotic Schwarszchild co-ordinates, so that the 
invariant arc-length, dr 2, is given by 

where 

2GM~ ~ dx~ dx, + ( 1 2GM'~ dr 2 = - ( 1  + r ~ - f l  i=l - ~C2-fl dx4 dx4 (3.18) 

3 
r 2=  ~ XZX i, and x 4= Ct (3.19) 

~=1 

Therefore, h~/~ is the diagonal matrix consisting o f - 2 G M / r C  2 for each 
diagonal term. 

Because of the static nature of the situation it will only be necessary to 
consider equation (3.14) for /, = 4. Using the corresponding expression 
from equation (3.16) we then have 

2GM 1)V2A4 GM 4rr 
- - r-U~c2r.VA4 = ~-J4 (3.20) 
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where we have used the ordinary vector notation: 
3 3 

V2A4-~ ~ A4,ii and r .VA4= ~ x~A4,~ (3.21) 
i=1 i=1 

and where the static aspect of the situation has been taken into account. 
Retaining terms of first order in GM/rC 2 we then have the relation 

V2A4 + r~5C2 r. VA 4 = - 1 -~- ~-C~-)J4 (3.22) 

This is the equation governing the electric field in the neighborhood of 
the wire. 

3a. Solution of the Wire Equation 

In this section we propose to carry the solution of equation (3.22) through 
to the extent that it becomes apparent that the component of the electric 
field parallel to the wire, at a nearby point equidistant from the ends of the 
wire, is zero. 

The physical situation is as follows: The current-carrying wire segment 
is of co-ordinate length l and is 'straight'--i.e. lies along the x~-axis, with 
its center at x ~ = 0, and with its center at a co-ordinate distance r0 from 
the center of the mass M (the Earth). We are interested in the 1-component 
of E at a point with co-ordinates O, r  - d,0)--i.e, at a point a co-ordinate 
distance d from the center of the wire in the negative direction of the x2-axis. 

Now in general we have 
10A 

E = - V A  4 - ~ aS (3a.1)  

Therefore, the component of E 'parallel' to the wire is given by 

E 1 = - A  41 = -A4,1 (3a.2) 

since the situation is static. The word parallel here is in quotes since, 
because of the curved nature of the space, the two x~-co-ordinate lines 
involved are not actually parallel. However, by making d sufficiently small 
(and/or ro sufficiently large) we can speak of E1 as the component of E 
truly parallel to the wire to any degree of precision that we desire. 

We see, then, that to find E~ we must find A 4. 
Referring then to equation (3.22) we see that the terms involving VA 4 

andj4(GM/rC 2) are small perturbations to an equation whose solution we 
know. That is, without these terms being present, the solution to equation 
(3.22) is 

1 f j4'd3x ' 
A(4~ = C r '  (3a.3) 

where the integration is along the wire, and r '  is the co-ordinate distance 
from the general point on the wire to the field point. 

We now assume that the solution, A4, to the wire equation with the 
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perturbation terms present is of the form 

A4 = A~ ~ + eA(4 x) + " "  (3a.4) 
where 

2GM 
~ C 2  (3a.5) F0 

Inserting this series into equation (3.22) we obtain the following equation, 
which is correct to first order in e: 

r0 V - c ~ ) j 4  (3a.6) V2A4 + 2r~ccr" f jg'd3x' 
r 

where primes have been appended to all quantities involved in an integra- 
tion, to avoid confusion. 

From the above relation we may 

where all integrations are over the 

immediately write for A4, 

+ �89 f J4" d3 x"} d3 x' r" ~ ; -  (3a.7) 

wire; r '  and r" signify distances from 
points on the wire to the field point; r denotes the co-ordinate distance from 
the center of M to points on the wire; and j4' =J4" = const. 

It is not difficult (but rather lengthy) to evaluate the above expression, 
especially if the radius of the wire is sufficiently small. For our purpose, 
however, we need only note that the above expression must be an even 
function of x 1. From this it follows that 

E1 = -A,41 / = 0 (3a.8) 
xl=0 L xl=0 

and this is to first order in c~ = 2GM/ro C z. 
Therefore, the generally covariant Maxwell's equations lead to the result 

that the component of E parallel to a 'straight' resistanceless current- 
carrying wire segment in a weak, static, spherically symmetric gravitational 
field is zero to terms of first order in GM/ro C 2 (at a point equidistant from 
the ends of the wire)--thus contradicting the Principle of Equivalence. 

It is to be noted here that this result persists for vanishingly small gravita- 
tional fields where space becomes Galilean, since the difference between the 
two predicted fields divided by either does not go to zero in the limit of 
large r0. 

Furthermore, we note that the zero value of the parallel component of E 
(through first order in a) predicted to exist in the Schwarszchild co-ordinate 
system for large r0, implies that this component is also zero to first order in 
c~ in a local inertial system located at very large r0. This is so because, for 
large r0, the ratio of E in the Schwarszchild co-ordinate system to E in a 
local inertial system at the same location is expected to differ from unity 
by a term the order of a. This rules out the possibility that the predicted 
zero component was merely the result of the chosen co-ordinate system. 

9 
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4. Discussion 

It has been demonstrated that the covariant formulation of electro- 
dynamics found in General Relativity and the Principle of Equivalence as 
formulated here are incompatible. The nature of the disagreement is one 
that, in principle, could be checked by experiment as follows: One would 
take a straight superconducting wire segment (about 1 m long) placed 
horizontally in the Earth's field. Since the wire is a superconductor we 
would expect classically that E outside be absolutely zero (assuming that 
the E field due to the rest of the circuit was screened off of course). Now, 
on the one hand, the Principle of Equivalence predicts an electric field 
component, in the vicinity of the wire, parallel to the wire in this case--  
which could be displayed as a potential difference on a nearby parallel wire 
segment or as dipole radiation from this segment if the current in the super- 
conductor is alternating. On the other hand, General Relativity seems to 
imply that El be zero in this case (at a point equidistant from the wire ends). 
A delicate measurement here could resolve the issue. 

Appendix 

Consider a wire of length l carrying a constant current i and moving 
with constant intrinsic acceleration g. Let this wire be viewed from an 
inertial system relative to which the wire is at rest at time t = 0. All quantities 
shall refer to measurements made in this inertial system. The motion of the 
wire relative to this Lorentz frame is as follows: The wire approaches the 
frame with decreasing speed and finally stops and then reverses its direction 
of motion. We wish to find E 1 at point P which is fixed in the inertial frame 
and which is equidistant from the ends of the wire and is a distance t0 
(denoted by d in the text) from the wire at time t = 0. We take the con- 
ventional current in the wire to be in the direction of the +xl-axis, and the 
acceleration to be along the +x3-axis--see Fig. 1. 

Now, 
1 . 

El = --~A1 (since ~,l=o) (A.1) 

and 

v co s 0 (A. 2) 
A I = C  r 1 rC 

F 

where _r' denotes the retarded contour of the wire, and all quantities under 
the integral sign are to be retarded. 

Therefore, 

E I = - ~  ~ r 1 - - -  

 xl} 
vc~ 

t = 0  

(A.3) 
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Since E1 depends on a time derivative we shall first be interested in 
evaluating A1 for very small positive t, at point  P, and then taking the 
derivative at t = 0. For  this reason, in the following, we only retain terms 
involving small positive t, to first order. 

Now,  
cgt 

v3(t) ~/(C2 + gZ t z), v3(0) = 0, v~(< 0) < 0 (A.4) 

Assuming that  gl ~ C 2, it follows that  gt ~ C, and therefore that  

v3(t ) ~ gt (A.4') 
for t < 0 .  

X 3 

t~< t 

P 
Figure 1 .--Contribution to field at point P at time t. 

t=o 

~O( re ta rded  
_ _ . ~ ~  contour) 

Therefore, 

and 

0 t 

- ( v3(0  ag + (~,3(~) #g = ~ + ~ = g{t  ~ + ( t ' )~  
~ 0 ~ 

(A.5) 

r 
(7 = (t - t ' )  (A.6) 

where t is small and positive; ~ and ~ +/~ are distances to the location o f  
the wire at times t and t = 0 respectively; t '  is the retarded time, for  a 
segment at a given x~ along the wire, for the field at P at time t, 

Now,  
r 2 - xl 2 = [or + ~(t)] z (a .7 )  

where ~(t) is the distance of  the wire f rom P at time t. 
We also have the relation 

~(t) = ~o + �89 ~ ~ ~o (A.8) 
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Now from (A.5) we have 

since ~ ~ �89 2 e,v 0 ~ ~ 
From (A.6) we now have 

JACK COHN 

' N / / 2 a \  
' = - d i g )  (A.9) 

C = t +  (A.10) 

Using this relation in (A.7) then yields the relation 

{'2 4-:.t 
r 2 - - X l  2 ~ 0  2 + g ~ 0  ~-~ q-~-  ~-~ C3 j 

Now we require that ~ ~ l. Since we also have gl ~ C 2, this implies that 

g t l  l 
C2 ~o ~ ~o (A.12) 

For fixed l and ~o we require that g be sufficiently small that we can still 
have 

gl l 
C2~o ~ I 

Now then, 

g2 r 4 / C  4 ~.~ gl l 
~ogr2/C2 = C'-~ ~7 "~ 1; 

Therefore, (A. 11) can be written as 

~og~ r 2 1 - -C-~] % xl 2 + ~0 2 

Now, 
~og . ~-~ ~. 1 (since ~0 ~ 1) 

Therefore, we have 
r2  ~ X' 2 + ~0 2 __ 2~ogrt 

= C 
which yields the following solution for r 

r ~ - ~ogt + C,(x2 +/~o2 ) 
L ,  

g2r3t/C3 gl I 
~o grt/C ~= -C -~ ~o ~ I 

2 ~o grt 
C 

(A. 13) 

(A.14) 

(A. 15) 

(A.16) 

(A.17) 

(A. 18) 

Now since v/C ~ 1, we can write 

i{.I l 
E,~=-~ ~ = -~ 

/~ I t=0 

f'12 ~ogt dx, )}t=o (A'19) C + V'(x'2 + G2 

--I12 
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Therefore, we finally have the relation 

2ig l l 7rig 
El = - - ~ - ~ t a n -  2d =~ C3 

137 

(A.20) 
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